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ABSTRACT 

We consider subshi f t s  of  finite type  on the  symbolic  space genera ted  by 

incidence mat r ices  over a countably  infinite a lphabet .  We ex tend  the  

definit ion of topological pressure  to this  context  and,  as our  ma in  result ,  

we cons t ruc t  a new class of  Gibbs s ta tes  of  HSlder cont inuous  potent ia ls  

on these  symbol  spaces.  We es tabl ish  some basic s tochas t ic  propert ies  of  

these  Gibbs s tates:  exponent ia l  decay of correlations,  central  limit theo-  

r em and  a n  a.s. invariance principle. This  is accompl ished via  detai led 

s tudies  of  t h e  associa ted Pe r ron -Froben ius  opera tor  and  its con juga te  

operator .  

0. Introduction. Preliminary notation 

This paper has emerged as a natural consequence of our interests in geometrical 

and dynamical properties of the limit sets of conformal graph directed Markov 

systems, a generalization of infinite conformal iterated function systems system- 

atically studied in [MU1], [MU2] and subsequent papers. Although our paper is 

self-contained, it could also be considered as the first step to developing the the- 

ory of conformal graph directed Markov systems. The central point of this paper, 

the existence of Gibbs states (and eigenmeasures of the operator conjugate to the 

Perron-Frobenius operator) for the shift map on the symbolic space generated 
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by an infinite alphabet, and a Hhlder continuous potential, is contained in Sec- 

tion 2. This is accomplished by producing Gibbs states for symbolic subspaces 

generated by finitely many elements of the alphabet and then demonstrat ing their 

tightness. In the first section we generalize the concept of topological pressure 

to the context of symbolic space over an infinite alphabet and we provide there 

several variational principles. Section 3 is devoted to systematic studies of Gibbs 

states and their relations with equilibrium states. In Section 4 we introduce the 

Perron-Frobenius operator and its conjugate. We deal here with their proper- 

ties and we establish basic relations between Gibbs states and eigenmeasures of 

the conjugate Perron-Frobenius operator. In Section 5, following a classical ap- 

proach, we investigate the Perron-Frobenius operator from the point of view of 

the Ionescu-Tulcea and Marinescu inequality. This is the key point to establish 

in the next section, Section 6, the stochastic properties of the Gibbs states. We 

obtain the weak-Bernoulli property, exponential decay of correlations, a central 

limit theorem, and an a.s. invariance principle. In the last section, Section 7, we 

compare our approach with that  of O. Sarig. 

Let us now present the general notation used throughout the whole paper. The 

letter I always means a countably infinite set, frequently called the alphabet,  and 

sometimes identified with the set of positive integers N. Any function A: I × I -+ 

{0, 1} is called an incidence matrix. The set 

E ~ = { x  C I ~ :  A~w,+l = 1 for all i > 1}, 

the space of all A-admissible infinite sequences with terms in I ,  is frequently 

called the symbol space (or the shift space) generated by the matr ix  A. By E* 

we mean the set of all finite A-admissible sequences (words) and, for every n > 1, 

E n denotes the set of all A-admissible words of length n. Given w E E ~ U E*, 

the symbol Iwl represents the number of letters forming w. If n < Iwl, then 

wl,~ = wlw2. . 'w ,~  is the restriction of w to its first n letters. Finally a: I °° -+ I ~ 

is the (one-sided) shift map (cutting off the first coordinate), i.e., a({w,~}n>l) = 

{w,~}n_>2- Notice that  a ( E  ~ )  C E ~ and therefore we can consider the map 

a : E ~ --+ E ~ ,  called in the sequel the subshift of finite type generated by the 

matr ix  A. We finally take fl > 0 and consider the metric d~ on the space I ~ b y  

setting 
dfl(w, 7-) -- e -fl(LwA~'l-1) 

where wAT is the maximal initial common block of w and T (we use the convention 

e -°° = 0). We consider the same metric on the space E °°. 
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1. Topological  pressure and variational principles 

We call the incidence matr ix  A irreducible if for all i, j E I there exists a pa th  

w E E* such that  Wl = i and Wl~ I = j .  We call it primitive if there exists p > 1 
such that  all the entries of A p are positive, or in other words, for all i, j E I there 

exists a pa th  w E E p such that  Wl = i and Wl~ I = j .  The matr ix  A is said to 

be finitely irreducible if there exists a finite set A C E* such that  for all i, j E I 

there exists a path  w E A for which iwj E E* and finally A is said to be finitely 

primitive if there exists a finite set A C E* consisting of words of the same length 

such that  for all i, j E E there exists a path  w E A for which iwj E E*. Notice 

that  a finitely irreducible matr ix  does not have to be prinlitive nor conversely. 

Notice also that  the set A (associated either with a finitely irreducible or finitely 

primitive matrix) can be taken to be empty provided E °° is the full shift. Given 

a set F c I ,  we put 

E ~ = F  ~ n E  ~ = { w E F ~ : A ~ +  1 = 1  for al l i>_ 1}. 

Given additionally a function f : E ~  --4 ]R we define the topological pressure of 

f with respect to the shift map a: E ~  --+ E ~  to be 

)) (1.1) r E ( f )  = lim 1 l o g  exp sup ~ f (aJ(T))  , 
n~o¢ n wEF nEn \ rE[wag] 

where [w n F] = {T E E ~ :  TII~I ---- w}. If F = I we simply write [w] for [w ;3 F]. 

Since the sequence n ~-~ log Z,~(F, f )  is subadditive, where 

n--1 

.oI.,:l: v. ox.( 
wEF" \ TE[woF] j=0  

the limit in (1.1) exists. If  F = I ,  we suppress the subscript F and write simply 

P ( f )  for P I ( f )  and Z,~(f) for Z,I(I, f ) .  

There are several things concerning the pressure function which may differ 

radically fronl the case when the alphabet is finite. However, there is a reasonably 

wide class of functions introduced in [MU3] for which the pressure function is 

fairly well behaved. 

Detinition 1.1 (see [MU3]): A function f :  E °¢ --+ ]i is acceptable provided it is 

uniformly continuous with respect to the metric d~ for sonle fl > 0 and 

osc(f)  := sup{sup(fl[i]) - inf(]l[i])} < c¢. 
iEI  

We shall prove the following. 
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THEOREM 1.2: I f  f :  E ~ -+ R is acceptable and A is finitely irreducible, then 

B(f)  = sup{BE(f)}, 

where the supremum is taken over ali t~nite subsets F o f I .  

Proof'. The inequality P( f )  > sup{BE(f)} is obvious. To prove the con- 
verse suppose first that  P ( f )  < cx~. Put  p = max{lwl: w E A} and T = 

min{infy]~=lo:foaJi[o~]:w • A}, where [w] = {T • E ~ :  T[I•I---- W}. Fix e > 0. 

By the acceptability o f f ,  there exists I _> 1 such that I f ( w ) - f ( T ) l  < E, if wit = Tit 

: l o g Z , ( f )  > P(f ) .  and M = osc(f) < co. Now, fix k _> I. By subadditivity, g 
For each F C I and m • N, set 

m - 1  

wcF,~OE,~ k ~-E[o~] j = 0  

Then there exists a finite set F C I such that  

1 log Fk(F, f )  > P ( f ) -  c. (1.2) ~ _ 

We may assume that F contains A. Put  

k - 1  

7= Z: 
j=O 

Now, for every element T = r:, T2, . . . ,  rn E F k N E  k x . . .  x Fk NE k (n factors) one 

can choose elements c~:, C~z,-.., a n - :  E A such that ~ = ~'1alT2C~2 . . .  T,~--Xan-:',, 
E E*. Then for every n > 1 

kn+p(n-1) 

Z 
i = k n  

exp(  sup ~:~1 f ° a j  ) 
~-E (F k n E  k )n [TOF] 

> Z exp ( i n f  k-I f o a j )  

> Z e x p ( ~ - ~ i n f ] l [ ~ i l ÷ T ( n - 1 ) )  
1"E( FkfqEk )n i=1 

n 

= exp(T(n - 1)) Z exp Z inf]l[~,l 
~-E(FhnEk)n i=1 
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___ e x p ( T ( n -  1)) E 
r E ( F k n E k )  n 

= exp(T(n - 1) - (k - l)en - M l n )  

exp sup ]l[,,] - (k - l)e - M l  

n 

E exp E sup ]l[rd 
. E ( F k n E k )  ,~ i=1 ( )n 

---- e - T e x p ( n ( T  -- (k - l)e - Ml ) )  E exp(sup fit,]) • 
.E(FkNE k) 

Hence, there exists kn < in <_ (k + p)n such that 

Zi .  (F, f )  >_ l e - T e x p ( n ( T  -- (k - l)e - Ml )  ) rk (F ,  ] ) "  
pn 

and therefore, using (1.2), we obtain 

1 -[T[ le M l  
P F ( f )  ---- lim : - - l o g Z i . ( F , f )  >_ - e +  + P ( f ) - e  _> P ( f ) - 4 e  

"-+~ ~n k k + p k 

provided that k is large enough. Thus, letting e "~ 0, the theorem follows. The 

case P( f )  = o~ can be treated similarly. II 

We say a a-invariant Borel probability measure/2 on E ~ is finitely supported 

provided there exists a finite set F C I such tha t /2 (E~)  = 1. The well-known 

variational principle (see [Wa], el. [PU]) tells us that  for every finite set F C I 

P F ( f ) = s u p { h ~ ( a ) +  f f d # } ,  

where the supremum is taken over all a-invariant ergodic Borel probability mea- 
sures/2 with/2(F ~)  = 1. Applying Theorem 1.2, we therefore get the following. 

THEOREM 1.3 (1st variational principle): I f  A is finitely irreducible and i f  

f :  E °° --4 R is acceptable, then 

P(f)=sup{hr,(a)+ f fdfz}, 
where the supremum is taken over all a-invariant ergodic Bore1 probability 

measures/2 which are finitely supported. 

We would like to note that Theorem 1.2 and Theorem 1.3 have been proved in 

[Sa] as Theorem 2 for locally H61der continuous potentials. We would like however 

to add that  in [Sa] the shift map is only assumed to be topologically mixing 

whereas we need finite irreducibility. Let us also add that  a theorem similar to 
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our Theorem 1.2 appeared in [Za] as Theorem 1.3. In [Za] however the author 

assumes that  the potential has a continuous extension on a compactification of 

the coding space, hence, in particular, it must be bounded whereas we allow 

unbounded potentials. 

Now, given n > 1 let a~ -1 be the standard parti t ion of E ~ into cylinders of 

length n: 
= = 

We put 
n - 1  

j = 0  

If  n = 1 we write also a for a °. Our next theorem is the following. 

THEOREM 1.4 (2nd variational principle): If f: E ~ -~ R is a continuous func- 
tion and [z is a a-invariant Borel probability measure on E °° such that f f dfz > 
-oo, then 

+ J <_ 

g~ 

P( f ) .  

In addition, ifP(f) < oo, then H~(a)  < c~. 

Proofi If P ( f )  = +oc  there is nothing to prove. So, suppose that  P ( f )  < oc. 

Then there exists q > 1 such that  Zn(f) < oo for every n > q. Also for every 

n > 1 we have 

~([w])sup(Snfllw,) >_ f S,~fd~ = n f fdfz > -c~. 
I~l=n 

Therefore, using concavity of the function h(x) = -x  log x, we obtain for every 

n > q  

H~(a3 -1)  + f Snfdp <_ ~ P([~])(supSnflt~] - logp([w]) 
J IoJl=n 

: Zn(f)(  ~ Zn(f)-lh(eSUpSnflt~]f~([w]))e -supsnfl[~]) 
I~l=n 

< Zn(f)h( Z Zn(f)-lesupS"llt~]f~([w])e-supSnllt~l) 
Iwl=n 

: Zn(f)h(Zn(f) -1) 

= l o g (  Z exp(supSnflM))=logZn(f). 
" Iwl=n 



Vol. 125,  2001 G I B B S  S T A T E S  99  

Hence H~(a~ -1) _< logZn( f )  + nf(- f )d /2  < co for every n _> q. Thus H~(a)  < 

q-1 is a generator, we therefore get oo. Since in addition a0 

ha(a) + f fd/2 <_ li~inf ( l (Ha(a~-~) + f S d d # ) )  ) 

_< lira -1 logZn(f) = P ( f ) .  
n--~ oo n 

The proof is complete. | 

We remark that  under some additional assumptions, implying in particular 

that  the potential f has a continuous extension on a compactification E °°, this 

theorem follows from Theorem 1 in [PP]. 

As an immediate consequence of Theorem 1.3 and Theorem 1.4, we get the 

following. 

THEOREM 1.5 (3rd variational principle): Suppose that the incidence matrix A 
is finitely irreducible. I f / :  E °° -+ R is acceptable, then 

P( f )=sup{h~(a)+ f fd/2}, 

where the supremum is taken over all a-invariant ergodic Borel probability 
measures/2 such that f f d/2 > -oo. 

We note that  the same theorem under weaker assumptions on the shift map 

and stronger assumptions on the potential f has been proved in [GS] and [Sa]. 

We end this section with the following. 

PROPOSITION 1.6: If the incidence matr ix  is finitely primitive and the function 
f is acceptable, then P ( f )  < oo if and only i fZl( f )  < cx~. 

Proof'. Let q _> 1 and A C Eq be the objects resulting from finite primitiveness 

of the incidence matr ix  A. Let 

M = m i n  inf f o a  j : a c A  . 
[~] - j=0 

For n _> 1 and w E I n let -~ = wlalw2a2.. "Wn--lan--lW,, E E n+q(nl), where all 

c~1,..., an are appropriately taken from A. Since f is acceptable, we therefore 
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get 

wEE.+q( ,~ l  ) \ [9] I. j=0 

j=0 
n 

_> eM(n-1)exp ~--~sup(fl[~jl) -- osc(f)n 
" j = l  

= e x p ( - M  + (M - osc(f))n) ~exp(sup( f l [~ j l ) )  
eEI 

= e x p ( - M  + ( M  - osc( f ) )n)Z~( f )" .  

Thus P ( f )  >_ M -  o s c ( f ) +  log Z 1 (f) .  Hence, if P ( f )  < c~, then also Z 1 ( f )  ((X). 

The opposit implication is obvious since Zn( f )  <_ Z l ( f )  '~. The proof is complete. 
| 

2. The existence of  eigenmeasures of the conjugate Perron-Frobenius  
operator a n d  o f  G i b b s  states 

Here we prove the main result of our paper. It concerns the existence of eigenmea- 

sures of the conjugate Perron-Frobenius operator and Gibbs states. If f :  E ~ --+ 

R is a continuous function, then a Borel probability measure rh on E ~ is called 

a Gibbs state (cf. [Bo], [HMU], [PU], [Ru], [Wa] and [Ur]) for f if there exist 

constants Q >_ 1 and P¢~ such that for every w E E* and every T E [w] 

(2.1) Q_,  < ~h([w]) < Q. 
- exp(Sfo~lf(7") - e~lwl) - 

If additionally rh is shift-invariant, it is then called an invariant Gibbs state. 

Remark 2.1: Notice that  the number St~If(T) in (2.1) can be replaced by 

sup(SMfl[~]) or by inf(Sl~lfl[~]). 

For the sake of completeness we provide a short direct proof of the following 

folklore result (see [Bo]) which win be needed in the sequel. 
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PROPOSITION 2.2: 

(a) For every Gibbs state  ~h, P,~ = P ( f ) .  

(b) A n y  two Gibbs states o f  the function f are equivalent with R a d o n - N i k o d y m  

derivatives bounded away from zero and infinity. 

Proof'. We shall first prove (a). Towards this end fix n > 1 and, using Re- 

mark  2.1, sum up (2.1) over all words w E E" .  Since ~-~1~1=-~h([w]) = 1, we 

therefore get 

Q - l e - P ' ~ "  ~ exp ( supS ,  fl[,~]) < 1 _< Qe -e'~'~ ~ exp(supSnflt~]).  

Io~l--n I~1=~ 

Applying logarithms to all three terms of this formula, dividing all the terms by 

n and taking the limit as n -+ oo, we obtain - P , ~  + P ( f )  < 0 < - P , ~  + P ( f ) ,  

which means that  P,~ = P ( f ) .  The proof of of i tem (a) is thus complete. 

In order to prove part  (b) suppose that  m and v are two Gibbs states of the 

function f .  Notice now that  part  (a) implies the existence of a constant T > 1 

such that  

T_ I < v([w]) < T 
- m([~]) - 

for all words w 6 E*. A straightforward reasoning gives now that  v and m are 

equivalent and T -1 < d u / d m  < T.  The proof is complete. | 

We say that  a function f :  E °° --+ R is Hblder continuous with an exponent 

c~> 0 i f  

V~( f )  = inf{L : If(w) - f(T)[ _ Ld~(w,  T), wl = r l}  < oo. 

Note that  each Hblder continuous function is acceptable. 

LEMMA 2.3: / fg:  E °° -~ C and V~(g) < o% then for all w i t  E E °° with Wl = "rl, 

all n >_ 1, and all p E E ~ with Ap .~  1 = A~..o~ = 1 we have 

I&~g(P¢,. ' )  - S,~g(pr)l < V~(g) d~(~,~-). 
- e O ~ _ l  
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Proof: We have 

[S,~g(pw) - S,~g(pT) I < 

_< 

The proof is complete. 

We set 

_< 

_< 

_< 

| 

n - 1  

i=O 

n--1 

E Va(g)dc~(a'(p~), ai(TW)) 
i=0  

n - 1  

V,~(g) E e-'~(n-i)dc~(w' T) 
i=0  

e-O~ 
V , ( g l ~ d ( ~ ( w ,  T) 

v.(g) z (w r~ 
e a-l~c'~ , /. 

(v . (g )  
T(g) = exp \ e "  - 1 ] "  

From now throughout this section f :  E ~ ~ R is assumed to be a HSlder con- 

tinuous function with an exponent fl > 0 and is assumed to satisfy the following 

summability requirement: 

(2.2) Z exp(sup(fl[e] )) < oo. 
eEI  

This requirement allows us to define the Perron-Frobenius operator £ f :  

Cb(E ~) --4 Cb(E~), acting on the space of bounded continuous functions 

Cb(E~), as follows: 

cs(g)(~) = ~ exp(y(e~))g(e~). 
e E l : A e . ,  1 = 1  

Then [[£:f[[0 _< ~eelexp(sup(f[[e])) < oc and for every n _> 1 

• " t E E  n :Arnwl ~1 

The conjugate ope ra to r / : )  acting on the space C~ (E ~ )  is defined as follows: 

Li(,)(g) = ,(L~(~)). 

Assume now that there exists a Borel probability measure 7h which is an eigen- 

measure of the conjugate operator £}: C~(E ~) -+ C~(E°°). The corresponding 



Vol. 125, 2001 GIBBS STATES 103 

eigenvalue is denoted by A. Since £ I is a positive operator, A > 0. Obviously 

£}n(rh) = AnTh. The integral version of this equality takes on the form 

(2.3) / E exp(Snf(Tw))g(Tw)d#t(w) = A '~ / gdrh 
TE E n  :Am w1:1 

for every function g • Cb(E~). In fact this equality extends to the space of all 

bounded Borel functions on E ~ .  In particular, taking w • E*, say w • E n, a 

Borel set A C E ~ such that A~.T1 = 1 for every 7 • A, and g = l[wA] , we obtain 

from (2.3) 

An#~([wA]) = ]"  E exp(SJ(~-p))l[~A](Tp)dFn(p) 
T E E  n : A m  Pl : 1 

= ~p exp(Snf(wp))dFn(p) 
E A : A , ~ n p  1 =1 

= ]A exp(S~f(wp))d~(p). (2.4) 

Remark 2.4: Suppose now that  (2.4) holds. Representing then any Borel set B c 

g ~ as a union U w C : E  n [wBw], where g~ = {a • g °0 : A~.a,  = 1 and wa • B}, 
a straightforward calculation based on (2.4) demonstrates that  (2.3) is satisfied 

for the characteristic function 1B of the set B. By the standard approximation 

argument (2.3) is therefore satisfied for all ~h-integrable functions g. As the final 

conclusion we obtain that rh is an eigenmeasure of the conjugate operator £} if 

and only if formula (2.4) is satisfied. 

An alternative proof of the following theorem is included in the proof of 

Theorem 8 in [Sa] under the weaker assumption that the shift map has the big 

images property. 

THEOREM 2.5: I[ the incidence matrix is finitely irreducible, then the eigen- 

measure ff~ is a Gibbs state for f . In addition A = e P(-f). 

Proo~ It immediately follows from (2.4) and Lemma 2.3 that for every w • E* 

and every T • [W] 

rh([w]) _< A-'~T(f)exp(Snf(T)) = T(f)exp(Snf(T) - n log A), 

where n = IwI . On the other hand, let h be given by finite irreducibility of A. 

For every a E A let 

E a  = {:r • E °° : w ~ r  • E ~ } .  
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By the definition of A, LJaEA E a  = E °~. Hence, there exists "r E A such that  

rh(E~) > (#A) -1. Writing p = h'[ we therefore have 

rh([w]) ~rh([wT]) = A-(n+P) f exp( Sn+pf (wTp) )dfi~(p) 
Jp E ECC :A,r~,pl =1 

= A  -(n3rp)  [ exp( S,J (wT p) )exp( Spf ( T p) )dfn(p) 
J pEE °° :A~ppl =1 

>_A-nexp(min{inf(Slalf[H):a E A} - p l o g A )  

x f exp(S,f(wTp))dfn(p) 
d pEE °° :A.~ppl ----i 

=CA-n f_ exp(S,J(w'yp))d~h(p) >_ CT(f)-lA-'~m(E,~)exp(Snf(r)) 
,y 

>_CT(f) -1 ( # h ) - l e x p ( S J ( r )  - n log A), 

where C = exp(min{inf(S~lf[[a]) : a E A} -plog)~).  Thus rh is a Gibbs state for 

f .  The equality A = e P(/) follows now immediately from Proposition 2.2. The 

proof is complete. | 

In order to simplify notation we will skip in the rest of this section the subscript 

f .  We begin our "existence" considerations with the following result whose first 

proof can be found in [Bo]. 

LEMMA 2.6: If the alphabet I is finite and the incidence matrix is irreducible, 
then there exists an eigenmeasure rh of the conjugate operator £*:. 

Proof: By our assumpt ion/ : :  is a strictly positive operator (in the sense that  

it maps strictly positive functions into strictly positive functions). In particular 

the following formula 

defines a continuous map of the space of Borel probability measures on E °° into 

itself. Since E °° is a compact metric space, the Schauder-Tichonov theorem 

applies, and as its consequence, we conclude that the map defined above has a 

fixed point, say rh. Then £}(rh) = Arh, where A = £}(rh)(1).  The proof is 

complete. | 

In Lemma 2.8, actually the main result of this paper, we will need a simple 

fact about irreducible matrices. We will provide its short proof for the sake of 

completeness. It is more natural and convenient to formulate it in the language 

of oriented graphs. Let us recall that an oriented graph is said to be strongly 
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connected if and only if its incidence matrix is irreducible. In other words, it 

means that  every two vertices can be joined by a path of admissible edges. 

LEMMA 2.7: I f  F = (E, V) is a strongly connected oriented graph, then there 

exists a sequence of strongly connected subgraphs (En, Vn) of F such that all 

the vertices Vn and all the edges En are finite, {Vn)n°¢= 1 is an increasing se- 

quence of  vertices, { Eu)n°°__l is an increasing sequence of edges, (J,=l = V and 
oo E (J,=l ~ = E.  

Proof  Indeed, let V = (vn : n > 1} be a sequence of all vertices of F and let 

E = {en : n _> 1} be a sequence of edges of F. We will proceed inductively to 

construct the sequences {Vn}~-I and {En}~=l. In order to construct (El,  V1) let 

a be a path joining Vl and v2 (i(a) = vl, t(a) = v2) and let fl be a path joining 

v2 and vl (i(fl) = v2, t(/3) = vl). These paths exist since F is strongly connected. 

We define 1/1 C V to be the set of all vertices of paths a and ~ and E1 C E 

to be the set of all edges from a and fl enlarged by el if this edge is among all 

the edges joining the vertices of 1/1. Obviously (El,  V1) is strongly connected 

and the first step of the inductive procedure is complete. Suppose now that a 

strongly connected graph <En, V,~> has been constructed. If v ,+l  E V,~, we set 

Vn+l = V~ and E~+I is then defined to be the union of E,~ and all the edges from 

{el, e2 , . . . ,  e,~, e,~+l} that are among all the edges joining the vertices of V~. If 

vn+l ~ Vn, let a~ be a path joining vn and Vn+l and let fl~ be a path joining V~+l 

and v~. We define Vn+l to be the union of V,~ and the set of all vertices of c~n and 

fl,~. E,~+I is then defined to be the union of E~, all the edges building the paths 

an and fl,, and all the edges from {el, e2 , . . . ,  en, e,~+l} that  are among all the 

edges joining the vertices of Vn+l. Since (En, V~> was strongly connected, so is 

(En+I, Vn+l). The inductive procedure is complete. It immediately follows from 

the construction that V,~ C V~+I, En C En+l,  [J,~=l V~ = V and Un~=l En = E.  

We are done. | 

Our main result is the following. 

LEMMA 2.8: Suppose that f: E ~ -+ R is a H61der continuous function such that 

~ c _ r  exp(sup(f lH))  < oo. and the incidence matrix is irreducible. Then there 

exists a BoreI probability eigenmeasure da of  the conjugate operator £*f. 

Proof: Without losing generality we may assume that I = N. Since the incidence 

matrix is irreducible, it follows from Lemma 2.7 that we can reorder the set N 

such that  there exists an increasing-to-infinity sequence {ln},~>l for every n _> 1 

and the matrix AI{ 1 ..... In)×{1 ..... l~} is irreducible. Then, in view of Lemma 2.6, 
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there exists an eigenmeasure Ca. of the operator £*, conjugate to the Perron- 
Frobenius operator 

& :  C ( E ~ )  ~ C ( E ~ )  

associated to the function f lE~,  where, for any q > 1, 

E q  = E ~ N { 1 , . . . , q } ~  = {(ek)k>l : 1 <_ ek <_ q and A~k~k+ ~ = 1 for all k _> 1}. 

Occasionally we will also treat £,~ as acting on C(E °°) and £* as acting on 

C*(E°°). Our first aim is to show that the sequence {rh~}n_>l is tight where 

rhn, n _> 1, are treated here as Borel probability measures on E °°. Let P~ = 

P(a[EF,fEff~ ). Obviously P,~ _> P* for a l ln  _> 1. For every k > 1 let rrk: E °° -+ N 

be the projection onto the k-th coordinate, i.e., 7r({(e~)~>l}) = ek. By Theo- 

rem 2.5, e P~ is the eigenvalue of f *  corresponding to the eigenmeasure rhn. 

Therefore, we obtain for every n >_ 1, every k >_ 1, and every e E Bt that 

= rh,([w]) < } 2  exp(sup(SkflD]) - Pnk) 
wEEpn :wk =e wEE~n :wk =e 

< e-P"k E exp(sup(Sk_lSl[,o])) + sup(fl[~]) 
wEE~n :wk =e 

e -e~k eSUp(/IN) eSUp(/Itd). 

" iEN 

k -1  
E eSUp(IIcil) E eSUp(l[Ul). 
iEN j>e 

Therefore 

rhn(Tr~-l([e + 1, co))) < e-P*k ( 

Fix now e > 0 and for every k _> 1 choose an integer nk _> 1 such that 

) k - 1  6" 

iER j>nk 

Then, for every n > 1 and every k > 1, rhn0rki([nk + 1, oo))) < c/2 k. Hence 

rh,  E ~ N H[1 ,nk]  >_ i - ~ ~ ( % - l ( [ n k  + 1,oc))) _> i - } 2  
k_>l k_>l k_>l 

= 1 - ~ .  

Since E°°N IIk>l[1, nk] is a compact subset of E °°, the tightness of the sequence 

{~h~}n>l is therefore proved. Thus, in view of Prochorov's theorem there exists 

rh, a weak-limit point of the sequence {~hn}n>l. Let now £o,n = e-P"/ :n and 
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/~0 -- e -P(f)/~ be the corresponding normalized operators. Fix g 6 Cb(E °°) 
and ¢ > 0. Let us now consider an integer n > 1 so large that  the following 

requirements are satisfied: 

(2 .5)  I lgl loexp(sup(f l [~l)  - P ( f ) )  < e / 6 ,  
i > n  

(2.6) E Ilglloexp(sup(fl[i]))e -p~ (P ( f )  - P~) _< e/6,  
i > 1  

(2.7) 

and 

(2.8) 

I~*~(g) - ~ ( g ) l  _~ ¢/3,  

Eo(g)dFn - / £o(g)d~hn <_ ~/3. 

It is possible to satisfy condition (2.6) since, due to Theorem 1.2, lim,~_~ P,~ = 

P ( f ) .  Let g,~ = glE~. The first two observations are the following: 

(2.9) 

and 

(2.10) 

E g(iw)exp(f(iw) - P~)dTh~(w) 
i ~ n : A ~  n =1 

E g(iw)exp(f(iw) - Pn)drh~(w) 

f 
] E gn(iw)exp(f(iw) - Pn)d6tn(w) 
JE i<n:A,~ n =1 

= ~o, ,~mn(g,~)  = '~,~(gn) 

f f 
,~o(~o) - ,~n(g)  = I (~o - ~)~'~o = I o~,~o = o. 

J E  J E  

Using the triangle inequality we get the following: 

(2.11) + IE.~,,~rhn(g) - rhn(g,~)l + I~n(g,~) - rhn(g)l + Irhn(g) - ~n(g)l. 

Let us now look at the second summand. Applying (2.6) and (2.5) we get 
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f _  ~ g(iw)(exp(f( iw) - P ( f ) )  - exp(f(iw) - P,~))drh,~(w) 
J ~  

~x~ i<--n:A*',.'n = 1  

0o i~>n:Aiwn ~ 1  

--- I Igl Iod(* )e-P" (P ( / )  - Pn) + I tgl Ioexp(sup(fl[~] - P ( / ) ) )  
i < n  i > n  

-< Z It91loexp(sup(f[[i])) e-P~ (P( f )  - Pn) + e/6 
i>1 

(2.12) <~/6 + c/6 = e/3. 

Combining now in turn (2.8), (2.12), (2.9), (2.10) and (2.7) we get from (2.11) 

that 

Letting e "N 0 we therefore get £~rh(g) = rh(g) or £}~h(g) = eP(l)rh(g). Hence 

/:~rh = eP(f)rh and the proof is complete. | 

As an immediate consequence of this theorem and Theorem 2.5, we get the 

following. 

COROLLARY 2.9: Suppose that f :  E °° -~ R is a H61der continuous function such 

that EeEI exp(sup(fl[e])) < oc and the incidence matrix is finitely irreducible. 

Then there exists a Gibbs state for f . 

As an immediate consequence of Theorem 2.8, Theorem 4.3, Theorem 2.5, and 

Theorem 3.2, we get the following. 

COROLLARY 2.10: Suppose that f: E °° --+ R is a H61der continuous function 

such that ~eel exp(sup(f][e])) < ¢c and the incidence matrix is finitely primitive. 

Then: 

(a) There exists a unique eigenmeasure Fnf of  the conjugate Perron-Frobenius 

operator £,*f and the corresponding eigenvalue is equal to e P(I). 

(b) The eigenmeasure ~h I is a Gibbs state for f . 

(c) The function f:  E °° ~ R has a unique a-invariant Gibbs state f~f, this 

Gibbs state is completely ergodic and the stochastic laws presented in 

Section 6 are satisfied. 

The character of the following sections is somewhat different. We mainly exam- 

ine properties of Perron-Frobenius operators, Gibbs states and eigenmeasures of 

the conjugate Perron-Frobenius operators assuming the existence of these mea- 

sures and imposing some additional requirements, frequently weaker than those 

needed in Section 2 for the proof of the existence of such measures. 
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3. Properties  of  Gibbs states and equilibrium states 

As an immediate consequence of (2.1) and Remark 2.1 we get the following. 

PROPOSITION 3.1: Any uniformly continuous function f: E °° -+ R that has a 

Gibbs state is acceptable. 

Given w E E* and n _> 1 let 

E ~ - - { T E E n : A - ~ , ~ I = I }  and E~. = { r E E * : A r M ~ I = I } .  

We shall prove the following result which is well-known (see for example Lemma 

2.1 in [ADU]) except the right-hand-side inequality in formula (2.1). 

THEOREM 3.2: I f  an acceptable function f has a Gibbs state and the incidence 

matrix A is finitely primitive, then f has a unique invariant Gibbs state. More- 

over, this invariant Gibbs state is exact. 

Proof: Let ~h be a Gibbs state for f .  Since the matrix A is finitely primitive, 

inf{Th(a([i])) : i E I} > 0 and it therefore follows from Lemma 2.1 in [ADU] that 

there exists a a-invariant Borel probability measure ~ absolutely continuous with 

respect to ~h and, even more, the left-hand-side inequality in formula (2.1) holds. 

Let now the finite set A and the integer q _> 0 be given by finite primitiveness of 

the incidence matrix A. By acceptability of f ,  

T = min{inf(SqflH) : a 6 A} > -oo .  

Fixing w 6 E*, using (2.1), Remark 2.1 and Proposition 2.2(a) we get for every 

n > q  

= 

r6E. ~ 

-> E E 

Z Z 

Q-lexp( inf(Sn+l~if l [ r~])  - P(.f)(n + Iw[)) 
aeAnE(~l) rEE~_q 

>_Q-1 ~ Z exp(inf(Sn-qfl[r]) -- P ( f ) ( n -  q) 
aEAnE(Wl) 7"6E~_q 

+ inf(Sq.fIM) - qP(f )  + inf(Sl,,ifl[,~ ]) - e ( f ) l~ l )  

>_Q-leTe-qP(l)exp(inf(Sl~lfii~]) - e(f) iwI)  

× ~ ~ exp(inf(S,_qfi[r]) - P(f)(n - q)) 
ANE(,~,) "r6 E~_q o~C q 

_>Q-2exp(T - P(f)q)5~([w]) 
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x E E exp(inf(S~-qflM) - P ( f ) ( n -  q)) 
aE AfqE(q~I ) ~-c E~_q 

- Q - 2 e x p ( T -  P(f)q)(n([w])Q-1 E rh([T]) 
Ir-=n--q 

=Q-3exp(T  - P(f)q)5~([w]). 

Since /2([w]) > l iminf~-~rh(a -n ( [w] ) ) ,  we therefore conclude that /5([w]) _> 

Q-3exp(T - P(f)q)rh([w]) and consequently/5 is a Gibbs state. Exactness of 

such a measure is well-known (see Theorem 3.2 in [ADU], for example) and 

uniqueness follows immediately from ergodicity of any invariant Gibbs state and 

Proposition 2.2(b). The proof is complete. | 

We say that two functions f ,  g: E ~ -+ R are cohomologous in a class 7/ if 

there exists a function u: E °~ --+ R in the class 74 such that 

g - f = u - u o a .  

We shall provide now a list of necessary and sufficient conditions for two Hhlder 

continuous functions to have the same invariant Gibbs states. The proof is 

analogous to the proof of Theorem 1.28 in [Bo] (see also [HMU]). 

THEOREM 3.3: Suppose that f ,  g: E ~ --+ R are two H61der continuous functions 

that have invariant Gibbs states f~f and/bg respectively. Suppose also that the 

incidence matrix A is finitely irreducible. Then the following conditions are 

equivalent: 

(1) t5I = / ;g .  
(2) There exists a constant R such that ira's(w) = w, then 

S j ( w )  - S , g ( w )  = ,~R. 

(3) The difference f - g is cohomologous to a constant in the class of bounded 

H61der continuous functions. 

(4) The difference g - f is cohomologons to a constant in the class of bounded 

continuous functions. 

(5) There exist constants S and T such that for every w E E ~ and every n _> 1 

IS. / (w)  - S.g(w) - Sn I <_ T. 

/ f  these conditions are satisiqed then R = S = P ( f )  - P(g). 

Proof." (1) ~ (2). It follows from (2.1) that 

exp(Skf(w) - P( f )k) )  Q-2 _< 
exp(Skg( o) - p ( g ) k ) )  

_< Q2 
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for every w E E ~ and every k _> 1. Suppose now tha t  (r'~(w) = w. Then  for 

every k = In, l > 1, 

Q - 4  < e x p ( l ( S , J ( w )  - Sng(w))  - ( P ( f )  - P (g) )n )  < Q4. 

Hence, there exists a constant  T _> 0 such tha t  

l [ S J ( w )  - S,~g(w) - ( P ( f )  - P(g))n[  _< T 

and therefore, let t ing l / z  ~ ,  we conclude t ha t  S n f ( w ) - S , ~ g ( w )  = ( P ( f ) - P ( g ) ) n .  

Thus,  pu t t ing  R = P ( f )  - P ( g )  completes  the proof  of the impl icat ion (1) =v (2). 

(2) ~ (3). Define 

~7= f - g - R .  

Since the incidence ma t r ix  A is irreducible, there exists a point  T E E ~ t ransi t ive 

for the shift m a p  or: E c¢ ~ E°% Pu t  

r = {~(~):  k > ]} 

and define the funct ion u : F ~ R by set t ing 

k-1 
u ( ~ ( ~ ) )  = ~ , 1 ( ~ 5 ( ~ ) )  • 

5=0 

Note tha t  the function u is well-defined since all points  a k ( r ) ,  k >_ 1, are mutua l ly  

distinct.  Taking the m i n i m u m  of exponents  we m a y  assume tha t  bo th  functions f 

and g are Hhlder continuous wi th  the same order/~. Let  A be the set coming f rom 

finite irreducibil i ty of the incidence ma t r ix  A. Let IAI = sup{ la  I : a C A} and 

S = sup{ISt~l~ I : c~ e A}. Fix  k >_ 1 and  consider periodic point  w = (TIkOL) °°. 
Then  by our a s sumpt ion  

k-1 

l u ( ~ ( ~ ) l  = ~ ( ~ ( ~ J ( ~ ) )  _ ( / ( ~ 5 ( ~ ) )  _ g ( ~ J ( ~ ) ) )  + Rk 
j=0 

I~1-1 

+ ~ (g(~k+hw) - ](~rk+Jw)) + RIll 
5=0 

k-1 
= ~((](~5(~-)) _ :(~5(w))) _ (g(~J(~-)) _ g(,.J(.,))) _ si~i,7(,.%0)) 

5=0 

k-1 k-1 

-< Z I:(~J(~)) - /(oJ(. . )) l  + Z 1~(~5(~)) - g(~(~))l 
j=0 j=o 
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k - 1  k - 1  

-< Z v~(f) e-~(~-j) + IsI-~(~k(~))l ~ v~(g) e-~(k-~) + s 
j = 0  j = 0  

(3.1) <(Vfl(f) + Vfl(g)) 1 - e-~ + S < oo. 

Assume now ak(r)lr = al(r)l~ for some k < I and some r ___ 1. 

TIk(ak(r)lt_k) ~. By our assumption ~-~.~-~ rl(aJ(w)) = 0. Hence, 

l--1 I--1 

Let w = 

/ - 1  

-< ~ ( I f ( ~ J ( ~ ) )  - f ( ~ (~ ) ) l  + lg(~J(~)) -g(~J(~)) l )  
j=k 
l-1 

~_ E ( U ~ ( f )  + V~(g))e -[3(r+l-j-i) 
j=k 

O 0  

(3.2) < e_~(Vz( f )  + W,(g) ) ~-~ e_~j = V~(I) + V~(g) e_,~" 
- 1 - e - ~  5=0 

In particular it follows from (3.2) that u is uniformly continuous on F. Since F 

is a dense subset of E °° we therefore conclude that  u has a unique continuous 

extension on E ~ .  Moreover, it follows from (3.1) and (3.2) that u is bounded and 

HSlder continuous. The proof of the implication (2) ~ (3) is therefore complete. 

Now, the implications (3) =~ (4) and (4) ~ (5) axe obvious. 

(5) ~ (1). It follows from (5) and (2.1) that for every w E E*, say w E E n, 

(3.3) Q-2e-Texp((S + e(g)  - P ( f ) )n )  < /21([w]) 
- ~g([~]) 
< Q2eTexp((S + P(g) - P ( f ) )n ) .  

Suppose that  S ~ P ( f )  - P(g). Without losing generality we may assume that  

S < P ( f )  - P(g). But then it would follow from (3.3) that  for every n > 1 

1 = # I ( S  ~ )  = ~ /2i([w]) _< Q4eTexp((S + P(g) - P ( f ) )n ) ,  

I~1=~ 

which gives a contradiction for n _> 1 large enough. Hence S = P ( I )  - P(g). 

But then (3.3) implies that the measures/21 and /~9 are equivalent. Since, in 

view of Theorem 3.2, these measures are ergodic, they must coincide. The proof 

of the implication (5) ~ (1) and simultaneously of the whole of Theorem 3.3 is 

complete. 1 
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We call a a-invariant probability measure ~ an equilibrium state of the 
potential f if f - f d #  < +co and 

+ / f d ~  = P(f).  h~(a) 

We end this section with the following two results. 

LEMMA 3.4: Suppose that the incidence matrix A is tinitely primitive and that 

a continuous function f: E ~ -+ R has a Gibbs state. Denote by f~I its unique 

invariant Gibbs state (see Theorem 3.2). Then the following three conditions are 
equivalent: 

(a) fEOO - fdf~ I < co. 
(b) ~'~ier inf(-ft[i])exp(inf fi[q) < co. 
(c) H~s (~) < co, where ~ = ([i] : i E I} is the partition of E °° into initial 

cylinders of length 1. 

Proo~ (a)::~(b). Suppose that f - f d ~ i  < co. This means that ~ iex  lid - f d f z l  
< co and consequently 

co > ~ inf(-f[[~])/~1([i]) >_ Q-~ y ~  inf(-f[bl)exp(inf f][~] - P(f)) 
iCI  iEI  

= Q-le-e( / )  Z inf(-flb])exp(inf fl[~]). 
iEI  

(b)=~(c). Assume that ~--:~ie/inf(-fl[il)exp(inf(f[[~])) < co" We shall show that 
Hll s (a) < co. By definition, 

It~f (~) = ~ -~S([/]) log #i([il) < ~ -~S([i])(inf(.fl[~l) - P($) - log Q). 
i E l  iEI  

Since Y~iez ~s([i])(P(f) + logQ) < co, it suffices to show that 

~ - ~ s ( [ i ] )  inf(fl[q) < co. 
iEI  

And indeed, 

~ -~s([i])inf(II[~l) = ~ ~S([i]) sup(-fl[~]) < ~ ~S([/])(inf(-fl[~l) + osc(I)). 
iEI  iEI  iE l  

Since }--~iex ~f([i])osc(f) = osc(f), it is enough to show that 

~ #I([i])inf(-]l[~l) < co. 
iE I  
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Since/5I is a probability measure, limi-~c¢/~i([i]) = 0. Therefore, it follows from 
(2.1) that  lim~_~oo(sup(fl[i]) - P ( f ) )  = -oc .  Thus, for all i sufficiently large, say 

i > k, sup(f[[i]) < 0. Hence, for all i > k, inf(-fl[i]) = -sup(f l [ i ] )  > 0. So, 
using (2.1) again, we get 

]Zf ([i])inf(--f[[i]) _< ~ Qexp(inf(f[[i]) - P(f ) ) in f ( - f [ [ i ] )  
i_>k i>_k 

= Qe -P(s) y ~  exp(inf(fl[i]))inf(-fl[i]),  
i>k 

which is finite due to our asssumption. Finally ~iel/51([i])  inf(-fl[~]) is finite. 

(c)~(a) .  Suppose that H~I (a) < o0. We need to show that f - f d / 5 f  < oc. 
We have 

oc > H~s (a) = ~ -/5f([i])log(/5/([/])) < ~ -/sl([i])(inf(fl[i]) - P ( f )  - logQ). 
iEI  iEI  

Hence, ~ i e l - / 5 I ( [ i ] )  inf(fl[i]) < cx~ and therefore 

f - f d f z l  = ~ f  i-fd[zf<y~sup(-fl[i])/S,([i])] - ice 

= ~ - inf(fl[i])/2f([i]) < oo. 
iEI  

The proof is complete. | 

THEOREM 3.5: Suppose that the incidence matrix A is finitely primitive. 
Suppose that f:  E c¢ -+ R is a H61der continuous bounded function that has 
a Gibbs state and that f - f d f z  I < oo, where/5I is the unique invariant Gibbs 
state for the potential f (see Theorem 3.2). Then/55 is the unique equilibrium 

state for the potentid f . 

Proof: In order to show that ~F is an equilibrium state of the potential f 

consider a = {[i] : i E I}, the partition of E °° into initial cylinders of length 

one. By Lemma 3.4, H~s (a) < co. Applying the Breiman-Shanon-McMillan 

theorem, Birkhoff's ergodic theorem, and (2.1), we get for/SF-a.e, w E E °~ 

h~,(a)  >_ h~ , (a , a )  = lim - -1  log~s([wl.] ) 
n--r  o~ n 

_> lim - l ( l o g Q  + S d ( w )  - P( f )n )  
n - + o o  n 

= lira - 1 S n f ( w )  + P( f )  = [ - f d / 5 1  + P ( f )  
n--~ oo n d 
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which, in view of Theorem 1.3, implies that /51 is an equilibrium state for the 

potential f .  

In order to prove uniqueness of equilibrium states we follow the reasoning taken 

from the proof of Theorem 1 in [DKU]. So, suppose that ~ ¢ fil is an equilib- 
rium state for the potential f : E °° --+ R. Applying the ergodic decomposition 
theorem, we may assume that 5 is ergodic. Then, using (2.1), we can write for 
every n _> 1 as follows: 

0 = n(h~(o ' )+  + f(s s- P(f)n)dz) 

= - Z  

_<-~2 

I~l=n 

= log Q - 

~([w]) (log~([w]) - (Snf(T~o) -- P( / )n ) )  for a suitable Tw C [w] 

~([w]) (log i , ( [ w l ) e x p ( P ( f ) n  - Snf(T~o)))  

~([w]) (log f i / ( [wl )Q-Xf i ( [w]) )  

Z ~([w])log (b( [w])  ) .  
t ~ l = .  \ ~ ( [ ~ 1 )  

Therefore, in order to conclude the proof, it suffices to show that 

_ ~([~1) l i r a  - Z u ( [ w ] ) l o g ( ~ ) ) = - o c .  
I,,,l=n 

Since both measures ~ and fiI are ergodic and ~ ¢ ~I, the measures 5 and PI 
must be mutually singular. In particular 

~ ~s([~ln]) - 

for every S > 0. For every j C Z and every n >_ 1 define now 

( ~([win]) 
Fn, j  = ~w C E ~  : e - j  < 

- ~A[~,I.]) 
< e-J  +1}. 

Then 

£ .  ~([~ln]) dPs(~)  < ps(F~,j)  < ~(F. , j )  -- ,~ PS([~I~]) - e-J+1 ~ " - e-J+1 
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and we have for each k = - 1 , - 2 , - 3 , . . .  

(~([~]) 
- ~ ~([~]) log ~ j  

I~ol--- 
f l o g  tg([w]) _ _  

~-- Z u(Fn,j) < k Z ~(Fn,j) T Z j e  - j + l  
jEZ j(_k j~_l 

= k~({w E E oo 1 ) ( [ w i n ] ) > e - k } ) + Z j e - J + l  

: ~f([~l.]------~ - 5>1 

> k + ~ j e  - j+l  asn--+ 0o. 

The proof is complete. | 

4. Properties  of  the Perron-Frobenius operator 

Let 

/:0 = eP(f) /~f  • 

The first result concerning the Perron-Frobenius operator is the following. 

THEOREM 4.1: Ira function f: E ~ --+ R has a Gibbs state, then for every n _> 1 
and every w E I n 

£~(1)(w) < Q. 

Proo~ Let u be a Gibbs measure for f .  In view of Lemma 2.3 and the definition 
of Gibbs states we get 

£~(1)(w)= Z e x p ( S n f ( T ) - P ( f ) n ) < _  Z Qu([rl"]) 

<__ Qu(a-"([w])) <_ Q. 

The proof is complete. | 

We would like to emphasize that in Theorem 4.1 we assumed only the existence 

of a Gibbs state and not an eigenmeasure of the conjugate Perron-Frobenius 

operator. We shall now prove the following. 

THEOREM 4.2: If  the incidence matrix is finitely primitive, then there exists a 

constant R > 0 such that 

Lg(1) (~)  _ R 
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for all n >_ 1 and all w E E °°. 

Proof: It follows from (2.3) and Theorem 2.5 that  f £~(1)drh -- 1 for all n > 1. 

Hence for every n > 1 there exists w(n) E E ~ such that  £~(1)(w(n)) _> 1. Let 

now A C E q be the set given by finite primitiveness of the incidence matrix A. 

Since A is finite and f is H61der continuous, we have 

N = min{exp(inf(Sqf[[~]) - qP(f ) )  : a  E A} > O. 

Applying now Lemma 2.3, we get for every n _> q + 1 and every V E E ~ the 

following: 

/:~(1)(T) = Z exp(Snf(wT) - P( f )n )  
to E E n :Awn "r 1 : 1 

>- Z exp(S,~f(wa(w)v) -- P ( f ) n )  
w E E n - q  

>- Z exp(Snf(wa(w)T)  - P ( f ) n )  
toEEn-q:Awn_qW(n-q) l=l  

>- Z exp(S,,_qf(Wc~(w)'r) - P ( f ) ( n  - q)) 
o~ESn-q:Aoan_q~O(n_q)t =1 

x exp(Sqf(a(w)r)  - P(f)q)  

>_ g Z exp(S,~_a.f(w~(w)~- ) - P ( f ) ( n  - q)) 
WE E n - q  :A~,, n_qw(n --q)l ~1 

>- N T ( f ) - l  Z exp(Sn_qf(ww(n - q)) - P ( f ) ( n  - q)) 
wEEn-q:Awn_qW(n-q) l  ~1 

= g T ( f ) - l £ ~ - q ( 1 ) ( w ( n  - q)) >_ g T ( f )  -~, 

where a(w) is an element of A such that A~,,~(~)I = A~(~)qrl = 1. Since by 

finite primitiveness of A, sup je i ( in f ( i  E I : A~j = 1}} < oc, we deduce that 

min,~_<q{inf(£~(1))} > 0. Combining this and the last display we conclude the 

proof. I 

THEOREM 4.3: I f  the incidence matrix is finitely primitive, then there exists at 

most one Borel probability fixed point of the conjugate operator £~. 

Proof: Suppose that  rh and rhl are two such fixed points. In view of Propo- 

sition 2.2(b) and Theorem 2.5 the measures rh and rhl are equivalent. Put  
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p = d~nl/dfiz. Fix t empora r i ly  w E E*,  say w E E n. I t  then follows f rom (3.1) 

and Theo rem 2.5 t ha t  

rh([w]) = f exp(Snf (wT)  P ( f ) n ) d ~ ( 7 )  I 

dr EE°°:A,o,~ ~-I ----1 

= [ exp(Snf (a(wT))  -- P ( f ) ( n  - 1)) 
J r  EEc~:Awn rl ~1 

x exp(f(WT) - P ( f ) ) d r h ( r )  
f 

= I exp(Snf(a(WT))  -- P ( f ) ( n  - 1)) 
J T E E ~  :A(a(~))n-1 ~1 =1 

x exp(f(WT) -- P(f))drh(~-).  

Hence 

inf(exp(f l [~ ] - P( f ) ) ) rh( [aa ; ] )  _< rh([w]) < sup(exp(f l [~  ] - P(f)))~h([aw]). 

Since f :  E °~ -+ R is HSlder continuous, we therefore conclude tha t  for every 

w E E  ~ 

(4.1) l im ~([wl"] )  n-+~ rh( [a (w) l ,_ l ]  ) = exp( f (w)  - P ( f ) )  

and the same formula  is t rue  with rh replaced by ~ 1 .  In  view of Theo rem 2.5 

and Theorem 3.2 there exists a set of points  w E E ~ with  gn measure  1 for which 

the R a d o n - N i k o d y m  derivatives p(w) and p(o(w)) are bo th  defined. Let w E E ~ 

be such a point.  Then  using (4.1) and its version for rh: we obta in  

p(w) = lim /'rh:([w]n]) 

= l im (T~ t l ( [W]n ] )  • gnl( [a(w)ln- : ] )  rh( [a(w)ln- : ] )  
J 

= e x p ( / ( w )  - - = 

But  since, in view of Theorem 3.2, a:  E m -+ E ~ is ergodic with respect  to a 

a- invar iant  measure  equivalent to rh, we conclude tha t  p is gn-almost everywhere 

constant .  Since rh: and rh are bo th  probabilist ic,  rh:  = ~ .  The  proof  is complete.  
| 

5. The  Ionescu-Tulcea and Marinescu inequal i ty  

Alternat ive  proofs of  most  results of this section can be found in Chap te r  4 of  

[Ar] and in [AD] (for example  Proposi t ion  1.4 in [AD] s ta tes  the same as our 
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Lemma 5.1). In particular the reader should notice that Gibbs-Markov maps 

considered in fAD] are a generalization of our subshifts with finitely irreducible 

incidence matrix and HSlder continuous potentials. 

Let 

7-/0 = {g: I °° -+ C: g is bounded and continuous} 

and for every a > 0 let 

~t .  = {g c ~t0: v . (g)  < ~}. 

The set 74, becomes a Banach space when endowed with the norm 

I1~11. = Ilgll0 + y . (~ ) .  

The main technical result of this section, called the Ionescu-Tulcea and Marinescu 

inequality, is the following. 

LEMMA 5.1 : Suppose that  a H61der continuous f imction f :  E °° --+ R, say wi th  an 

exponent  fl > 0, satis fying (2.2) has a Gibbs state. Then the normalized operator 

/~o: 7-/0 --+ 7go preserves the space 7i~ and moreover there exists  a constant  C > 0 

such that, for every  n ~_ 1 and every g C 7-l~, 

II~g(g)ll~ <- Qe-~nllgll~ + Cllgllo- 

Proo~ Let r, p 6  E ~ ,  TIk = Plk and Tk+l ~ Pk+l for some k > 1. Then for 

every n ~ 1 

£~ (g)(P) - £~ (g)(T) 

= ~ e x p ( S n f ( w p )  - P ( f ) ) g ( w p )  
¢a6E n : A ~ n p  1 = 1  

- ~ exp (Sn f (WT)  -- P ( f ) ) g ( w T )  
wEE n :A~np1:1 

= ~ e x p ( S n f ( w p )  - P ( f ) ) ( g ( w p )  - g(WT)) 
wEEn:A. ,npl  = 1  

(5.1) + ~ g(wv) (exp(S ,~ f (wp)  - P ( f ) )  - e x p ( S n f ( w T )  -- P(f ) ) ) .  
w6E'~:A,.onpl =I 

But Ig(wp) -g(w~')] _< V/3(g)e -/3(n+k), and therefore, employing Theorem 4.1, we 

obtain 

e x p ( S n f ( w p )  - P ( f )n ) ]g (wp)  - g(wr)] <_ E~(1)(p)V~(g)e  -~(n+k) 
w6En:Awnpt  = 1  

(5.2) <_ QV~(g)e -~('~+k) <_ e-~"QllglJ~d~(p,  r) .  
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Now notice that  there exists a constant M >_ 1 such that  I1 -eXl  _< M i x  I 

for all x with Ixl <_ log(T(f)).  Since by Lemma 2.3, ]Snf(wp) - S n f ( w r ) l  < 

d~(p, T ) l o g ( T ( f ) )  < log(T(f)),  we can estimate as follows: 

l exp(Snf (wp)  - P(f)n)  -exp(Snf(WT) -- P(f)n)l  

= exp(S,~f(wp) - P( f )n ) l l  - exp(S,~f(wv) - S,~f(wp))l 

< M e x p ( S n f ( w p )  - P ( f ) n ) l S n f ( w p )  - Snf (wT)]  

< M e x p ( S n f ( w p )  - P(f)n)  log(T( f ) )d~(p ,  T) 

= M l o g ( T ( f ) ) e x p ( S n f ( w p )  - P ( f )n )d~(p ,  T). 

Hence, using Theorem 4 again, we get 

Ig(wr)llexp(S,J(~,p) - P( f )n)  - exp(S,~/(w'r) - P(.f)n)l 
wEEn :A~n pl ----I 

< I lglloM log(T(f))df~(p, T) ~ exp(Snf (Wp)  -- P(f)n)  
wEEn :A~n p1:1 

: I lgl l0M log(T(f))d~(p, r ) / :~ (1 ) (p )  

< M Q  log(r( f)) l lgl lod~(p,  r). 

Combining this inequality, (5.2) and (5.1), we get 

IZ:~(g)(p) - £ ~ ( g ) ( r ) l  < e-~"Qtlgll~d~(p, r) + MQ log(T(/))llgllod~(p, T). 

Combining in turn this and Theorem 4.1 we get 

[[£~(g)[l~ <- Qe-~nllglla + Q ( M l o g ( T ( f ) )  + 1)[Ig[[~. 

The proof is finished. | 

Remark 5.2: We remark that  in fact in the proof of Lemma 5.1 we used only 

the "weaker" property of Gibbs states, namely the right-hand-side inequality of 

(2.1). 

If the unit ball in 7-//~ were compact as a subset of the Banach space ~/0 with 

the supremum norm I1" II0, we could use now the famous Ionescu-Tulcea and 

Marinescu theorem (see [ITM]) to establish some useful spectral properties of 

the Perron-Frobenius operator C0. But this ball is compact only in the topology 

of uniform convegence on compact subsets of E °° and we need to prove these 

properties directly omitting the Ionescu-Tulcea and Marinescu theorem. Begin- 

ning with Lemma 5.5 we develop the approach from [PU]. 
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T H E O R E M  5 . 3 :  Suppose that a H6lder continuous function f: E ~ -+ R, say with 

an exponent fl > O, satisfying (2.2) has a Gibbs state and the operator conjugate 

to the normalized Perron-Frobenius operator £o has a Bore1 probability ~xed 

point rh. Then the operator C0: 7-/~ -+ 7/~ has a fixed point ~ <_ Q such that 

f ed  rh = 1. If, in addition, the incidence matrix A is tlnitely primitive, then 

_> R, where R is the constant produced in Theorem 4.2. 

Proo~ In view of Lemma 5.1, I1£~(1)11~ _< Q + C for every n > 0. Hence 

n - - 1  

(5.3) 1 E C~(1) < _ Q + C  
j=o 

for every n _> 1. Therefore, by the Ascoli-Arzela theorem there exists an 

increasing-to-infinity sequence of positive integers {nk }k_> 1 such that the sequence 
{~kk ~-~j=0~--~nk--1 cj(1)}k>i_ converges on compact sets of E °°, say to ¢: E ¢¢ -4 R. 
Obviously II¢]lt~ -< Q + C and, in particular, ¢ 6 7its. Since rh is a fixed point 
of the operator conjugate to Co, f£Jo(1)dm = 1 for every j _> 0. Consequently 

n - 1  )-~j=o £Jo(1) d m =  1 for every n _> 1. Hence, applying Lebesgue's dominated 
convegence theorem along with Theorem 4.1, we conclude that f ~bdrh -- 1 and 

_< Q. Assuming in addition that the incidence matrix A is finitely primitive, 

using Theorem 4.2, we simultaneously get ¢ >_ R. We are left to show that 

E0(¢) -= ¢. And indeed, using Theorem 4.1, we get for every k >_ 1 that 

CO ~ nk-lcj(1)j:O '°~ 1 Q  / 1  nk-1 . \ 1 E : 1 1 [ C ~ ( 1 ) - £ o ( 1 ) [ ] o <  
[~-~k C~(1)) -- nk -- nk " 

Hence 

(5.4) Co 1 c (1) - -- c (1) o 
j=o nk j=o 

uniformly. Therefore, in order to conclude the proof it suffices to show that 
if a sequence {gk}k¢~=l C 7{0 is uniformly bounded and converges uniformly on 
compact sets of E ~ ,  say to a function g, then Co(gk), k >_ 1, converges uniformly 

on compact sets of E ~ to Co(g). And indeed, first notice that IIg[10 <- B, where 
k oo B is an upper bound of the sequence {g }k=l" Fix now ~ > 0. Since f has a 

Gibbs state, the series M -- ~-~ielexp(sup(fl[i]) - P )  converges and therefore 
there exists a finite set I~ c I such that 

(5.5) E 2Bexp(sup(fl[~]) - P) < e/2. 
i 6 1  ". I~ 
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Fix now an arbitrary compact set K C E ~.  Then for every i E I, the set 

i K  = { i T  : w E K and Ai~ = 1} is also compact and so is the set [-Jie1~ i K .  
k oo Since {g }k=l  converges uniformly on compact sets to g, there exists q > 1 such 

that  for every n >_ q, II(g,  - g ) l u , e ,  ~ iK <-- z / 2 M .  Applying this, Theorem 4.1 

and (5.5), we get for every n _> q and every w E K that 

ILo(g)(~) - Co(g. ) (~) l  

=lCo(g - g . ) (~) l  

<- ~ [g . ( iw)  - g ( i w ) l e x p ( f ( i w )  - P) 
iEI~:Ai~  1 : 1  

+ E Ig"( iw)  - g ( i w ) l e x p ( f ( i w )  - P) 
i E I  \ l~:Ai~ 1 =1 

~ . 
2 M  e x p ( f ( ~ w )  - P) + E ]g,~(iw) + g ( i w ) i e x p ( f ( i w  ) - P) < 

I 

i~ l~ :Aiw I =1 i E l  \ I~ :A,~ 1 =1 

E 
-<2-M E exp(sup(flbl) - P) + 2B E exp(sup(f[['] ) - P) 

i E l  i E I  \ Ie :Aiw 1 =1 

<el2 + el2 = ~. 

The proof is complete. | 

From now on we assume in this section that the incidence matrix A is finitely 

Then ¢ >_ R and therefore the operator T: 7/0 -+ 7/0~ given by the 

1 
(5.6) V(g) = ¢ ~ o ( g ¢ ) ,  

is well-defined. It is straightforward to check that T(7/~) C 7/~ (i.e., 1 /¢  and 
the product of any two functions in 7/~ are again in 7/~). The basic properties 

of the operator ~" following from Lemma 5.1, Theorem 4.2 and Theorem 5.3 are 

listed below. 

THEOREM 5.4: W r i t i n g  

en)  ¢(w) u , ( ~ )  = e x p ( S j ( ~ )  - ~ ( ~ - ~ ) ) ,  n > 1, 

we have  for ali g E 7/~ and ali n >_ 1 
(a) V " ( g ) ( ~ ) - -  1 . ~--~ t:0 (g¢)(~)  = E ~ c ~ : A ~ ° ~  =1 u , ( ~ ) g ( ~ ) .  
(b) 31~(1) = 1 and ll'lP~llo = I. 

(c) M = sup,~__1{l[~[l~} < co. 

primitive. 
formula 
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(d) T* (/2i) = 15 I .  In particular, the dosed subspaces 

7i ° = { g • n o : f t l ( g ) = O }  and 7 4 ~ = { g • 7 / ~ : f t l ( g  ) = 0 }  

are T-invariant. 
(e) 7i~ = I(1 ( ~  7/~ (g = t~l (g) l  + (g - f t l(g)l)).  

Denote  
0,1 

% = {g • r ig :  Ilglb -< 1}. 
We shall prove the following. 

LEMMA 5.5: For every n > 0 define 

01 b. = s u p { l l V ' ( g ) l b  : g • ~ z '  }. 

Then l i m ~ _ ~  b.  = 0. 

Proof: Define for every n > 0 

0,1 
am = sup{ l l~ (g) l lo  : g • 7 ~  }. 

I t  immedia te ly  follows f rom Theorem 5.4(b) t ha t  the 

(weakly) decreasing. We shall show first t ha t  

sequence {a , }~> l  is 

(5.7) aP(B(w, 6)) = E ~ .  

0,1 Fix now g • 7-/8 and n > 0. Since f ' [~  (g)dfti = 0, there exists T • I ~ such 

tha t  T~ (g ) ( r )  < 0. By  (5.7), for every w C I °~ there exists p • B(T, 5) N a-P(co). 
Then  T'~(g)(p) <_ T~(g) ( r )  + a/2 <_ a/2 <_ an - a/2. Thus  

ne~,-~(~) "-(p} 
a 

,E~-p(~) \{p} 
a a 

= a m -  ~Up(p) < a . -  ~inf (up) .  

lira an = O. 
n - - + o o  

Suppose, on the contrary,  tha t  a = limn-~o~ a,~ > 0. By  Theorem 5.4(c), 

sups> 0 b~ <_ M < oc. There  therefore exists 6 > 0 such tha t  if dE(w , T) <_ 5, then  
0,1 I'P~(g)(7) - T~(g)(w)t <_ a/2 for all g • n ~  and all n _> 0. Since A is finitely 

primitive,  there exists p > 0 such tha t ,  for every w • E°% 
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Similarly, we get ~ (T ~ g ) (w) > - an + -~ inf (Up) and, in consequence, [[T p+n g ll 0 < 

an - ~ inf(up) or 
a 

IITngllo _< an-p  - ~ inf(up) 

for every n _> p. Taking the supremum over all g E 7/~ '1, we thus get an <_ 

an-v - "~ inf(up). So, 

a 
a inf(up) = a -  inf(u v a = n-~oolim an < n-,oclim an-p - -~ -~ ) < a. 

This contradict ion shows tha t  lirn~_,o~ an = 0. 

Fix now ~ > 0 and then an integer v > 1 so large tha t  a,, < e /2C and 

Qe-f~'~M _< ~/2 for all n > v. Then,  in view of L emma  5.1 for every n > 2v and 
0,1 every g E 7/f~ we get 

So bn _< E and the proof  is complete.  | 

(a) 

and 

THEOREM 5.6: Suppose that a Hhlder continuous function f: E °° --+ R, say with 

an exponent ~ > O, satisfies (2.2). Suppose also that the normalized conjugate 

Perron-Frobenias operator £~ has a Borel probability fixed point ~n. Assume 

that the incidence matrix A is finitely primitive. Then there exist constants 

M > 0 and 0 < 7 < 1 such that for every g E ?-l~ and every n >_ 0 

]ITS(g) - f gdftfllZ <_ -M.yn ] ]gl ]~ 
J 

where T is the operator defined by (5.6) and/~f is the unique invariant Gibbs 

s ta te  of the potential f whose existence and uniqueness follow from Theorem 3.2 

and Theorem 2.5. 

Proof." Lemma 5.5 says tha t  lirn~_,o¢ I[T]~[[~ = 0. There  thus exists q > 1 

such tha t  T ] ~  I[~ -< (1/2).  So, by an immediate  induction, [[TI~ ~ ][~ <_ (1/2) n. 

Consider now an arb i t rary  n _> 0 and write n = pq + r, 0 < r < q - 1. Then,  

using in addit ion Theorem 5.4(c), we get for every ~ E 7/~ 

[l~Im~[]~ = ]]Tvq(2~'~)]l ~ < (1/2)P[]Tr~][f~ < M(1/2)  p = M(1/2)(n-r)/q 

<_ M(1/2)Cu-q+l)/q = M(1/2)Cl-q)/q(1/2)"/q 
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and therefore for every n > 0, I I T I ~  I1~ -< M(1/2)(1-q)/qTn, where 7 = (1/2) 1/q 

< 1. I f  now g e ?-/~, then g-f~f(g) • ~l°~ and l lg - /h f (g ) l t~  < IIglt~+llf~f(g)ll~ < 
211gil,. Thus,  for every n > 0 

Iriim (g - /~ f (g ) ) ] l~  -< 2MTnllgll~ 

and the p roof  of Theorem 5.6(a) is complete.  Pa r t  (b) is an immedia te  conse- 

quence of pa r t  (a). | 

The  next  proposi t ion,  the last  result  of this section, explains the real dynamica l  

meaning  of the fixed points  of the normalized Per ron-Froben ius  opera to r  E0. 

PROPOSITION 5.7: Assume that the operator conjugate to the normalized 
Perron-Frobenius operator £o = e - P ( f ) £ /  has a BoreI probability fixed point 
ff~. Let 

f i x ( £ o )  = {g • L I ( ~ )  : £o(g) = g, f g & h  = 1, and g _> 0} 
J 

and 
F 

AI(~h) = {g E L l ( r h ) :  g~n o a -1 =g(n, Jgd~n = 1, andg >_ 0}. 

Then Fix(£0)  = AI(rh).  

Proof: I t  follows from (4.1) tha t  for every i C I and every w C E °~ with A,~ 1 = 1, 

we have 
drh o " 

~ n  ~ (w) = exp(f (iw) - P ( f ) ) ,  

where we t rea t  i: {w C E c¢ : Ai~l = 1} --+ E °° as the m a p  defined by the formula  

i(w) = iT. Therefore,  the Per ron-Froben ius  opera to r  /:0 sends the densi ty of a 

measure /5  absolutely  continuous with respect  to rh to the densi ty of  the measure  

/5 o a -1.  Hence, the proposi t ion follows. | 

6. S t o c h a s t i c  l aws  

In this section we closely follow §3 of [DU1]. Let  F be a finite or countable  

measurable  par t i t ion  of a probabi l i ty  space (Y, iT, u) and let S: Y ~ Y be a 

measure  preserving t ransformat ion .  For 0 < a < b < oo, set F b -- Va<l<b S-IF" 
The  measure  u is said to be  absolutely regular  wi th  respect  to the  f i l t rat ion 

defined by F, if there exists a sequence/3(n)  "~ 0 such tha t  

fy sup sup Iv(Air3)- u(A)ldu < fl(n). 
a ACre+. 
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The numbers /~(n) (n > 1) are called coefficients of absolute regularity. Let a 
be the partition of I °~ into initial cylinders of length 1. Using Theorem 5.6, 

and proceeding exactly as in the proof of [Ry, §3 of Theorem 5], we derive the 

following (with the notation of previous sections). 

THEOREM 6 . 1  : The measure fzf is absolutely regular with respect to the filtration 

defined by the partition a. The coefficients of absolute regularity decrease to 0 

at an exponential rate. 

Theorem 6.1 says in particular that the dynamical system (a, fir) is weak- 

Bernoulli (see [Or]). As an immediate consequence of this theorem and the 
results proved in [Or] we get the following. 

THEOREM 6.2: The natural extension of the dynamical system (~,fzf) is 

isomorphic with some Bernoulli shift. 

It follows from this theorem that the theory of absolutely regular processes 

applies ([IL], [PS]). We sketch this application briefly. We say that a measurable 

function g: I ~ -+ R belongs to the space L* (a) if there exist constants 5, % M > 0 
2+5 such that  f Jig[]0 dlAf < O0 and 

l[g E~*s dftf < Mn-2 -~  

for all n _ 1, where Eps (g[ (a) n- l )  denotes the conditional expectation of g with 

respect to the partition ((~)n-1 and the measure/2f. L*(a) is a linear space. It 

follows from Theorem 5.1, [IL] and [PS] that with fzf(g) = f g dfzf the series 

OO 

= J,[ ( g -  + 2 f ( g -  o - 
oo n----1 I 

is absolutely convergent and non-negative. The reader should not be confused 

by two different meanings of the symbol a: the number defined above and the 
shift map. Then the process (g o a n : n >_ 1) exhibits an exponential decay of 

correlations and, if 0 "2 > 0, it satisfies the central limit theorem. More precisely, 

we have the following. 

THEOREM 6.3: If  u, v C L*(a) then there are constants C,O > 0 such that for 

every n ~ 1 we have 

f (g - Eu)( (g - Ev) o a '~) <_ Ce -°~, d#f 

where Eu = f u dfzf and Ev = f v df~ I. 
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THEOREM 6.4: If  g C L*(a) and a2(g) > O, then for all r 

n - - 1  r 

The  mos t  fruitful geometr ic  appl icat ion is the a.s. invariance principle and 

therefore we would like to devote  more  t ime  to it. This  principle means  tha t  one 

can redefine the process ( g o a  ~ : n _> 1) on some probabi l i ty  space on which there 

is defined a s t andard  Brownian mot ion  (B(t) : t _> 0) such t ha t  for some A > 0 

E [g o a j - fif(g)] - B(a2 t )  -- O(t acl2-;~) fil a.e. 
O<_j<t 

Let h: [1, oo) > • be a posit ive non-decreasing function. The  function h is said 

to belong to the lower class if 

and to the upper  class if 

~ h( t t )exp(-~h(t )2)dt:<x~.  

Well-known results for Brownian mot ion  imply (see Theorem A in [PSI) the 

following. 

THEOREM 6.5: If  g 6 L*(a) and a2(g) > 0 then 

n - - 1  

j=0 

S 0 if  h belongs to the lower class, 
1 if  h belongs to the upper class. 

Our  last goal in this section is to provide a sufficient condit ion for a function 

¢ to belong to the space L*(a). 

LEMMA 6.6: Each H61der continuous function which has some finite moment 
greater than 2 belongs to L* (a). 

Proof'. I t  suffices to show tha t  any Hhlder continuous function 0: Z -+ R sat- 

isfies the requirement  f H¢ -E t~ , (O[ ( a )~ )H  3 dill <- M n - 2 - 7 ,  which will finish 

the proof. So, given n _> 1 suppose tha t  w,7- E A for some A E a~  -1 .  In  

par t icular  w[~ = 7[~. Hence [¢(w) - ¢(7)] _< V~(O)e -~n,  which means  tha t  
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¢(T) -- V/~(¢)e -/~n _< ¢(w) < ¢(~-) + V~(¢)e -~n. Integrating these inequalities 
against the measure/hf and keeping w fixed, we obtain 

/ACd[~f -- V~(¢)e-Z~/~f (A) _< ¢(w)/~f(A) _< fA + Y~(¢)e-~/~f(A)" Cd/~f 

Dividing these inequalities by/~](A) we deduce that 

¢(w) 1 f A C d P ,  f < V f l ( ¢ ) e _ ~ n .  f~s(A) 

Thus f lie(w) - E~,(¢l(a)n)ll0 3 d[~ l <_ V/~(¢)3e -3~n and we are done. | 

7. A c o m p a r i s o n  w i th  Sar ig ' s  approach 

In [Sa] O. Sarig has proposed a different definition of pressure for the class 
of locally Hhlder continuous functions closely generalizing Gurevich's definition 

(see [Gu]) of topological entropy of subshifts with an infinite alphabet. Sarig's 
approach is the following. Fix i C I and define 

z , , ( f ,  i)  = exp(Snf( )). 
{ w6 E ~ :a n ( w )=W,Wl =/} 

It can be proven that the limit limn-~o~ I log Z ,  (f, i) exists and is independent 
of i. This number is just the topological pressure of f introduced by Sarig in 
[Sa]. We will denote it by Po(f) .  As we already mentioned, working always 
with locally Hhlder continuous functions Sarig has proved in [Sa] Theorems 1.3 

and 1.5 with P ( f )  replaced by ro ( f ) .  He has also proved Theorem 1.2 and 
Theorem 1.4 without any assumptions on the incidence matrix but with the 

pressure P ( I )  replaced by Po(f) .  Consequently, we always have Po(f )  _< P ( f )  
and P0(f )  = P ( f )  if the incidence matrix is finitely irreducible (in general this 

equality fails). We would like to add that O. Sarig has provided a simple short 

argument for equality Po( f )  = P ( f )  in the case when E °~ = I ~ ,  i.e., when 
E ~ is the full shift. This argument can be found, for example, in [HU]. We 

would like to add the remark that although Sarig's pressure Po(f )  behaves better 

as a theoretical notion (the variational principle is satisfied if both pressures 

differ), the more traditional definition of pressure like P ( f )  fits better our future 

geometrical applications. Our last comment is that the existence of Gibbs states 
constructed in Section 6 does not follow from the sufficient conditions provided 
in [Sa]. 
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